Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1150667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520539

RESUMO

Background: Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are increasingly observed in vaccinated individuals. Immune responses towards SARS-CoV-2 variants, particularly Omicron-BA.5, are poorly understood. We investigated the humoral and cellular immune responses of hospitalized COVID-19 patients during Delta and Omicron infection waves. Methods: The corresponding SARS-CoV-2 variant of the respective patients were identified by whole genome sequencing. Humoral immune responses were analyzed by ELISA and a cell culture-based neutralization assay against SARS-CoV-2 D614G isolate (wildtype), Alpha, Delta (AY.43) and Omicron (BA.1 and BA.5). Cellular immunity was evaluated with an IFN-γ ELISpot assay. Results: On a cellular level, patients showed a minor IFN-γ response after stimulating PBMCs with mutated regions of SARS-CoV-2 variants. Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced. Double-vaccinated patients with Delta breakthrough infection showed a significantly increased neutralizing antibody response against Delta compared to double-vaccinated uninfected controls (median complete neutralization titer (NT100) 640 versus 80, p<0.05). Omicron-BA.1 infection increased neutralization titers against BA.1 in double-vaccinated patients (median NT100 of 160 in patients versus 20 in controls, p=0.07) and patients that received booster vaccination (median NT100 of 50 in patients versus 20 in controls, p=0.68). For boosted patients with BA.5 breakthrough infection, we found no enhancing effect on humoral immunity against SARS-CoV-2 variants. Conclusion: Neutralizing antibody titers against Omicron-BA.1 and especially BA.5 were strongly reduced in SARS-CoV-2 breakthrough infections. Delta and Omicron-BA.1 but not Omicron-BA.5 infections boosted the humoral immunity in double-vaccinated patients and patients with booster vaccination. Despite BA.5 breakthrough infection, those patients may still be vulnerable for reinfections with BA.5 or other newly emerging variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Infecções Irruptivas , Anticorpos Neutralizantes , ELISPOT , Imunidade Celular
2.
Infection ; 51(6): 1703-1716, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37243960

RESUMO

PURPOSE: Vaccination against Streptococcus pneumoniae is recommended in transplant recipients to reduce the morbidity and mortality from invasive pneumococcal disease. Previous studies indicate that transplant recipients can produce specific antibodies after vaccination with the 13-valent pneumococcal conjugate vaccine Prevenar 13 (PCV13) or the pneumococcal polysaccharide vaccine Pneumovax 23 (PPSV23). National guidelines recommend sequential vaccination with PCV13 followed by PPSV23 in kidney transplant patients. However, there are currently no data on the serological response in kidney transplant recipients, who received a sequential vaccination with PCV13 and PPSV23. METHODS: In the current study, we sequentially vaccinated 46 kidney transplant recipients with PCV13 and PPSV23 and determined global and serotype-specific anti-pneumococcal antibody responses in the year following vaccination. RESULTS: Serotype-specific and global anti-pneumococcal antibody concentrations were significantly higher compared to baseline. We observed that serotype-specific antibody responses varied by serotype (between 2.2- and 2.9-fold increase after 12 months). The strongest responses after 12 months were detected against the serotypes 9N (2.9-fold increase) and 14 (2.8-fold increase). Global antibody responses also varied with respect to immunoglobulin class. IgG2 revealed the highest increase (2.7-fold), IgM the lowest (1.7-fold). Sequential vaccination with both vaccines achieved higher antibody levels in comparison with a historical cohort studied at our institute, that was vaccinated with PCV13 alone. During the 12-months follow-up period, none of the patients developed pneumococcal-associated pneumonia or vaccination-related allograft rejection. CONCLUSION: In conclusion, we strongly recommend sequential vaccination over single immunization in kidney transplant recipients.


Assuntos
Transplante de Rim , Infecções Pneumocócicas , Humanos , Formação de Anticorpos , Transplantados , Anticorpos Antibacterianos , Vacinas Conjugadas , Método Duplo-Cego , Vacinas Pneumocócicas , Streptococcus pneumoniae , Infecções Pneumocócicas/prevenção & controle , Vacinação
3.
Front Immunol ; 14: 1143870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006290

RESUMO

Background: Herpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk. Methods: We established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations. Results: In total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies. Conclusion: This study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Estudos Retrospectivos , Proteínas do Envelope Viral , Imunização Passiva , Anticorpos Bloqueadores
4.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214785

RESUMO

This study analyzed binding and neutralizing antibody titers up to 6 months after standard vaccination with BNT162b2 (two doses of 30 µg each) in SARS-CoV-2 naïve patients (n = 59) on hemodialysis. Humoral vaccine responses were measured before and 6, 12, and 24 weeks after the first vaccination. A chemiluminescent immunoassay (CLIA) was used to quantify SARS-CoV-2 IgG against the spike glycoprotein. SARS-CoV-2 neutralizing activity was tested against the wild-type virus. A multivariable binary regression model was used to identify risk factors for the absence of humoral immune responses at 6 months. At week 6, vaccine-specific seroconversion was detected in 96.6% of all patients with median anti-SARS-CoV-2 IgGs of 918 BAU/mL. At weeks 12 and 24, seroconversion rates decreased to 91.5% and 79.7%, and corresponding median binding antibody titers declined to 298 BAU/mL and 89 BAU/mL, respectively. Neutralizing antibodies showed a decay from 79.6% at week 6 to 32.8% at week 24. The risk factor with the strongest association for vanishing immune responses was low serum albumin (p = 0.018). Regarding vaccine-specific humoral responses 6 months after the standard BNT162b2 vaccination schedule, SARS-CoV-2 naïve patients receiving hemodialysis must be considered at risk of becoming infected with SARS-CoV-2 and being infectious.

5.
J Clin Med ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36615083

RESUMO

The COVID-19 pandemic has caused more than 6 million deaths worldwide since its first outbreak in December 2019 and continues to be a major health problem. Several studies have established that the infection by SARS-CoV-2 can be categorized in a viremic, acute and recovery or severe phase. Hyperinflammation during the acute pneumonia phase is a major cause of severe disease progression and death. Treatment of COVID-19 with directly acting antivirals is limited within a narrow window of time between first clinical symptoms and the hyperinflammatory response. Therefore, early initiation of treatment is crucial to assure optimal health care for patients. Molecular diagnostic biomarkers represent a potent tool to predict the course of disease and thus to assess the optimal treatment regimen and time point. Here, we investigated miRNA-200c as a potential marker for the prediction of the severity of COVID-19 to preventively initiate and personalize therapeutic interventions in the future. We found that miRNA-200c correlates with the severity of disease. With retrospective analysis, however, there is no correlation with prognosis at the time of hospitalization. Our study provides the basis for further evaluation of miRNA-200c as a predictive biomarker for the progress of COVID-19.

6.
Viruses ; 13(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34696344

RESUMO

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). The availability of effective and well-tolerated antiviral drugs for the treatment of COVID-19 patients is still very limited. Traditional herbal medicines elicit antiviral activity against various viruses and might therefore represent a promising option for the complementary treatment of COVID-19 patients. The application of turmeric root in herbal medicine has a very long history. Its bioactive ingredient curcumin shows a broad-spectrum antimicrobial activity. In the present study, we investigated the antiviral activity of aqueous turmeric root extract, the dissolved content of a curcumin-containing nutritional supplement capsule, and pure curcumin against SARS-CoV-2. Turmeric root extract, dissolved turmeric capsule content, and pure curcumin effectively neutralized SARS-CoV-2 at subtoxic concentrations in Vero E6 and human Calu-3 cells. Furthermore, curcumin treatment significantly reduced SARS-CoV-2 RNA levels in cell culture supernatants. Our data uncover curcumin as a promising compound for complementary COVID-19 treatment. Curcumin concentrations contained in turmeric root or capsules used as nutritional supplements completely neutralized SARS-CoV-2 in vitro. Our data argue in favor of appropriate and carefully monitored clinical studies that vigorously test the effectiveness of complementary treatment of COVID-19 patients with curcumin-containing products.


Assuntos
Tratamento Farmacológico da COVID-19 , Curcumina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Curcuma/metabolismo , Curcumina/metabolismo , Suplementos Nutricionais , Humanos , Medicina Tradicional/métodos , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Vero
7.
Viruses ; 13(7)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34372592

RESUMO

Herpes simplex viruses (HSV) are ubiquitously distributed with a seroprevalence ranging up to 95% in the adult population. Refractory viral infections with herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) represent a major global health issue. In particular, the increasing occurrence of resistance to conventional antiviral drugs make the therapy of such infections even more challenging. For instance, the frequent and long-term use of acyclovir and other nucleoside analogues targeting the viral DNA-polymerase enhance the development of resistant viruses. Particularly, the incidental increase of those strains in immunocompromised patients is alarming and represent a major health concern. Alternative treatment concepts are clearly needed. Natural products such as herbal medicines showed antiherpetic activity in vitro and in vivo and proved to be an excellent source for the discovery and isolation of novel antivirals. By this means, numerous plant-derived compounds with antiviral or antimicrobial activity could be isolated. Natural medicines and their ingredients are well-tolerated and could be a good alternative for treating herpes simplex virus infections. This review provides an overview of the recent status of natural sources such as plants, bacteria, fungi, and their ingredients with antiviral activity against herpes simplex viruses. Furthermore, we highlight the most potent herbal medicines and ingredients as promising candidates for clinical investigation and give an overview about the most important drug classes along with their potential antiviral mechanisms. The content of this review is based on articles that were published between 1996 and 2021.


Assuntos
Antivirais/química , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Simplexvirus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Ensaios Clínicos como Assunto , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Humanos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Simplexvirus/classificação
8.
Klin Monbl Augenheilkd ; 238(5): 569-578, 2021 May.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-34020485

RESUMO

Since the end of 2019, the novel severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has been spreading worldwide and has caused severe health and economic issues on a global scale. By the end of February 2021, more than 100 million SARS-CoV-2 cases had been reported worldwide. SARS-CoV-2 causes the coronavirus disease 2019 (COVID-19) that can be divided into three phases: An early phase with fever and cough (phase I), a pulmonary vascular disease (phase II) and a hyperinflammatory syndrome (phase III). Since viral replication plays a particularly important role in the early stage of the disease and the patient's immune system in the later course of infection, different therapeutic options arise depending on the stage of the disease. The antiviral nucleoside analogue remdesivir is the only antiviral compound with conditional approval in the European Union. Treatment with remdesivir should be initiated early (within the first seven days of symptom onset) in patients receiving supplemental oxygen without invasive ventilation. In turn, the anti-inflammatory corticosteroid dexamethasone should be administered later in the course of disease in patients receiving oxygen therapy. Since autopsies indicate an increased frequency of thromboembolic events due to COVID-19, additional treatment with anticoagulants is recommended. Since the development of novel antivirals may take years, the application of convalescent plasma from patients who recovered from a SARS-CoV-2 infection for the treatment of COVID-19 is reasonable. However, large-scale studies indicated low efficacy of convalescent plasma. Furthermore, vaccination of the population is essential to control the pandemic. Currently, the mRNA vaccine Tozinameran from BioNTech and Pfizer, the mRNA-1273 vaccine from Moderna as well as the vector vaccine AZD1222 from AstraZeneca are licensed in the European Union. All three vaccines have demonstrated high efficacy in large clinical trials. In addition to these licensed vaccines, many others are being tested in clinical trials. In the present article, an overview of therapeutic options for COVID-19 as well as vaccines for protection against SARS-CoV-2 is provided.


Assuntos
COVID-19 , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV , Antivirais/uso terapêutico , COVID-19/terapia , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Humanos , Imunização Passiva , Vacinação , Soroterapia para COVID-19
9.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807470

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted from person to person by close contact, small aerosol respiratory droplets, and potentially via contact with contaminated surfaces. Herein, we investigated the effectiveness of commercial UVC-LED disinfection boxes in inactivating SARS-CoV-2-contaminated surfaces of personal items. We contaminated glass, metal, and plastic samples representing the surfaces of personal items such as smartphones, coins, or credit cards with SARS-CoV-2 formulated in an organic matrix mimicking human respiratory secretions. For disinfection, the samples were placed at different distances from UVC emitting LEDs inside commercial UVC-LED disinfection boxes and irradiated for different time periods (up to 10 min). High viral loads of SARS-CoV-2 were effectively inactivated on all surfaces after 3 min of irradiation. Even 10 s of UVC-exposure strongly reduced viral loads. Thus, UVC-LED boxes proved to be an effective method for disinfecting SARS-CoV-2-contaminated surfaces that are typically found on personal items.


Assuntos
COVID-19/virologia , Desinfecção/métodos , SARS-CoV-2/efeitos da radiação , Inativação de Vírus/efeitos da radiação , COVID-19/prevenção & controle , Cosméticos , Desinfecção/instrumentação , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Raios Ultravioleta
10.
Viruses ; 13(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918301

RESUMO

The outbreak of SARS-CoV-2 developed into a global pandemic affecting millions of people worldwide. Despite one year of intensive research, the current treatment options for SARS-CoV-2 infected people are still limited. Clearly, novel antiviral compounds for the treatment of SARS-CoV-2 infected patients are still urgently needed. Complementary medicine is used along with standard medical treatment and accessible to a vast majority of people worldwide. Natural products with antiviral activity may contribute to improve the overall condition of SARS-CoV-2 infected individuals. In the present study, we investigated the antiviral activity of glycyrrhizin, the primary active ingredient of the licorice root, against SARS-CoV-2. We demonstrated that glycyrrhizin potently inhibits SARS-CoV-2 replication in vitro. Furthermore, we uncovered the underlying mechanism and showed that glycyrrhizin blocks the viral replication by inhibiting the viral main protease Mpro that is essential for viral replication. Our data indicate that the consumption of glycyrrhizin-containing products such as licorice root tea of black licorice may be of great benefit for SARS-CoV-2 infected people. Furthermore, glycyrrhizin is a good candidate for further investigation for clinical use to treat COVID-19 patients.


Assuntos
Antivirais/farmacologia , Ácido Glicirrízico/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19 , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteases 3C de Coronavírus/efeitos dos fármacos , Glycyrrhiza/química , Humanos , Peptídeo Hidrolases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Células Vero
11.
J Med Virol ; 93(5): 3047-3054, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33527424

RESUMO

When patients with chronic kidney disease are infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) they can face two specific problems: virus-specific immune responses may be impaired and remdesivir, an antiviral drug described to shorten recovery, is contraindicated. Antiviral treatment with convalescent plasma (CP) could be an alternative treatment option. In this case report, we present two kidney transplant recipients and two hemodialysis patients who were infected with SARS-CoV-2 and received CP. Antibodies against the receptor-binding domain in the S1 subunit of the SARS-CoV-2 spike protein were determined sequentially by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and neutralization assay and specific cellular responses by interferon-gamma ELISpot. Before treatment, in both kidney transplant recipients and one hemodialysis patient antibodies were undetectable by ELISA (ratio < 1.1), corresponding to low neutralizing antibody titers (≤1:40). ELISpot responses in the four patients were either weak or absent. After CP treatment, we observed an increase of SARS-CoV-2-specific antibodies (IgG ratio and neutralization titer) and of specific cellular responses. After intermittent clinical improvement, one kidney transplant recipient again developed typical symptoms on Day 12 after treatment and received a second cycle of CP treatment. Altogether, three patients clinically improved and could be discharged from the hospital. However, one 83-year-old multimorbid patient deceased. Our data suggest that the success of CP therapy may only be temporary in patients with chronic kidney disease; which requires close monitoring of viral load and antiviral immunity and possibly an adaptation of the treatment regimen.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunização Passiva/métodos , Transplante de Rim , Diálise Renal , SARS-CoV-2/imunologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antivirais/uso terapêutico , Proteína C-Reativa , COVID-19/terapia , ELISPOT/métodos , Feminino , Humanos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Glicoproteína da Espícula de Coronavírus/imunologia , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...